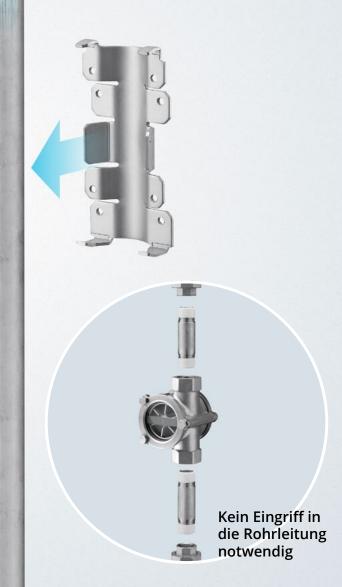


Anklemmbarer Durchflusssensor

NEU Modellreihe FD-H

IO-Link



Für weitere Informationen scannen

Einfach nur ANKLEMMEN

Vorteile des Anklemmkonzepts

Keine Modifizierung des Rohres	Kein Druckverlust
Keine Ausfallzeiten	Keine Kontamination
Schnelle Installation	Keine Leckage
Kein Verstopfen	Minimaler Wartungsbedarf

Modellreihe FD-H

Anklemmbarer Durchflusssensor - und mehr!

Überall einsetzbar

An jedem Rohr

Mit jeder Flüssigkeit

Unter allen Bedingungen

Unübertroffene Eigenschaften

Intuitive Bedienung und Visualisierung

Universelle Anschlussmöglichkeiten

Hohe Erkennungsgenauigkeit

Vollständige Prozessüberwachung

Durchflussüberwachung

Konzentrationsüberwachung

Temperaturüberwachung

Überall einsetzbar

Für weitere Informationen scannen

Mit jeder Flüssigkeit

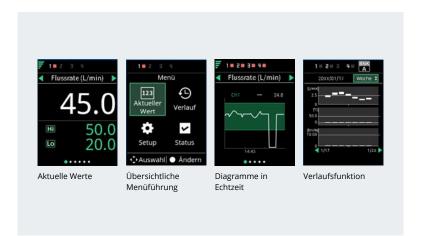
Stabile und zuverlässige **Erfassung**

Die Sensortechnologie der Modellreihe FD-H ermöglicht eine beeindruckende Erkennungsstabilität, unabhängig davon, ob VE-Wasser oder Flüssigkeiten mit hoher Viskosität überwacht werden sollen.

Unter allen **Bedingungen**

Standardmodell Hochtemperaturmodell

Die neue Hybrid-Erkennung der Modellreihe FD-H kann auch bei Blasen, Mikroblasen oder Partikeln eine beeindruckende Erkennungsstabilität gewährleisten.


Für hohe **Temperaturen**

Hochtemperaturmodell

Selbst bei sehr hohen Rohrtemperaturen ist die Modellreihe FD-H einsetzbar. Die Hochtemperaturmodelle bieten eine hohe Wärmebeständigkeit und können auf Rohren mit Oberflächentemperaturen von bis zu 180°C montiert werden.

Unübertroffene Eigenschaften

Eine Anzeige für Alles

Sie entscheiden was Sie sehen möchten

Das übersichtlich gestaltete Menü vereinfacht die Bedienung und Darstellung. Der Sensor kann je nach individueller Auswahl Zahlenwerte, Diagramme und Verlaufsdaten in verschiedenen Varianten darstellen.

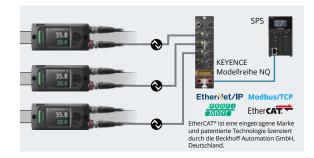
Daten werden jeweils ein Jahr lang gespeichert und können über USB ausgegeben werden

Integrierter Temperatursensor

Der integrierte Temperatursensor erweitert die Erkennungsmöglichkeiten. Mit einem einzigen Sensor ist es möglich, die beiden Prozessparameter Durchfluss und Temperatur zu überwachen.

Hohe Erkennungsgenauigkeit

Standardmodell Hochtemperaturmodell


Die Modellreihe FD-H bietet eine hohe Erkennungsgenauigkeit von ±3% des Anzeigewertes.

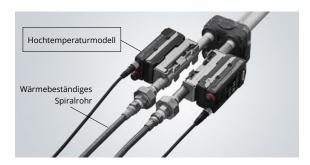
Diagnosefunktion

Integrierte Fehlersuche

Die Diagnosefunktion prüft verschiedene Faktoren, die die Erkennung und die Signalstabilität des Sensors beeinflussen können.

Universelle Anschlussmöglichkeiten

IO-Link und mehr


Mit der Modellreihe FD-H können mehrere Steuerausgänge, Analogausgänge und Eingänge beliebig kombiniert werden. Zusätzlich wird die Kommunikation über IO-Link unterstützt, um alle Sensordaten im Netzwerk bereitstellen zu können.

Umgebungsbeständigkeit

Wasserdicht, staubdicht und stoßfest

Die Durchflusssensoren haben die Schutzart IP65/IP67 und sind gegen Staub und Wasser geschützt. Mit zusätzlichen Schutzabdeckungen lässt sich die Robustheit und Beständigkeit noch zusätzlich erweitern.

Minimaler Platzbedarf

Kompakte Bauform für Montage an engen Stellen

Die Durchflusssensoren haben sehr kompakte Abmessungen. Bei sehr geringen Platzverhältnissen kann der Platzbedarf durch die abnehmbare Anzeigeeinheit noch weiter reduziert werden und macht einen Einsatz in nahezu jeder Anlage möglich.

VOLLSTÄNDIGE PROZESSÜBERWACHUNG

Überwachung der Durchflussrate und zusätzlicher Prozessparameter mit einem Sensor

Überwachen Sie alle Prozessparameter mit einem einzigen Sensor

Für weitere Informationen scannen

Konzentration

Temperatur

Vollständige Prozessüberwachung

Überwachen und verwalten Sie mehrere Prozessparameter zentral mit nur einer Anzeigeeinheit

Die Funktionalität der Modellreihe FD-H geht über die Überwachung des Durchflusses hinaus.

Dazu können bis zu zwei weitere Sensoren angeschlossen werden, um ein vollständiges Bild der Prozessparameter der Anlage zu erhalten.

Prozesswerte wie die Konzentration, Temperatur oder Durchflussmenge

können in einer Anzeigeeinheit zentralisiert werden, um die Auslastung und den Zustand einer Maschine überwachen, optimieren und kostspielige Ausfallzeiten vermeiden zu können.

Vermeidung kostspieliger Fertigungsprobleme

Stillstandzeiten

Qualitätsverlust

Beschädigung der Anlage

Beispiele für die vollständige Prozessüberwachung

Temperierungssteuerung für Gussformen [Durchflussrate und Temperatur]

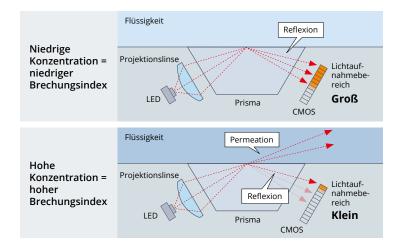
Qualitätskontrolle während des Abschreckens [Durchflussrate und Konzentration]

Überwachung/Befüllung des Kühlmittelbehälters [Durchflussrate und Konzentration]

Kühlmittelmanagement von Schleif- oder

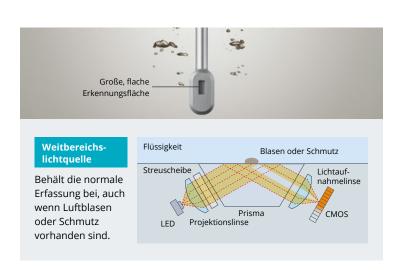
Kühlwassermanagement für Druckgussmaschinen

Konzentrationssensor



Verwendung von Refraktometern zur Konzentrationsbestimmung

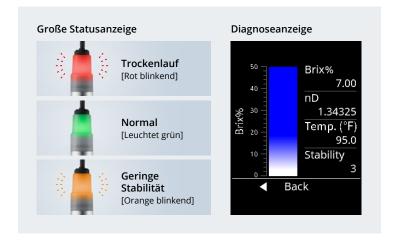
Refraktometer werden für die Bestimmung der Konzentration anhand des Brechungsindex verwendet und stellen häufig die Einheit Brix% an. Da der Brix%-Wert der Flüssigkeit regelmäßig von Hand überprüft werden muss, sind manuelle Refraktometer anfällig für fehlende oder fehlerhafte Messwerte. Zusätzlich kann es zu Verzögerungen bei der Erkennung von Unregelmäßigkeiten kommen, je nach dem wie häufig die Werte bestimmt werden. Durch die kontinuierliche Überwachung der Konzentration mit einem digitalen Refraktometer können Bedienfehler ausgeschlossen und Probleme sofort erkannt werden.


Modellreihe FD-H

Brechungsindex-Bestimmung

Verwenden von Lichtreflexion zur Bestimmung der Konzentration

Bei der Modellreihe FI-C wird wie bei einem Refraktometer der Brechungsindex der Flüssigkeit gemessen und dieser Wert in Brix% umgerechnet. Dies erfolgt durch Überwachung, wie viel Licht von der Oberfläche des Prismas reflektiert und nicht durch die Flüssigkeit absorbiert wird. Mit der Änderung der Konzentration ändert sich auch der Brechungsindex.



Hohe Stabilität und Zuverlässigkeit

Keine Beeinträchtigung durch Blasen oder Rückstände

Durch die Verwendung einer Weitbereichslichtquelle kann die Modellreihe FI-C eine konsistente und stabile Erfassung gewährleisten.

Die Weitbereichslichtquelle sorgt dafür, dass Blasen und Schmutz auf der Linse die Erfassung nicht beeinflussen. Die Oberfläche ist außerdem robust und kratzfest gegen Partikel, die sich in der Flüssigkeit befinden können.

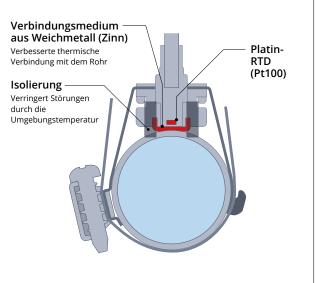
Große Statusanzeige

Fehlerbehebung auf einen Blick

Sowohl das Sondenmodell als auch das Inline-Modell haben eine große dreifarbige Statusanzeige. Diese Statusanzeige zeigt den Konzentrationsstatus der Flüssigkeit an und kann darüber hinaus auf potenzielle oder vorhandene Probleme mit der Flüssigkeit im Tank oder Rohr aufmerksam machen.

TemperaturModellreihe **FI-T**

Anklemmbarer Temperatursensor Temperaturbereich -20 bis +180°C



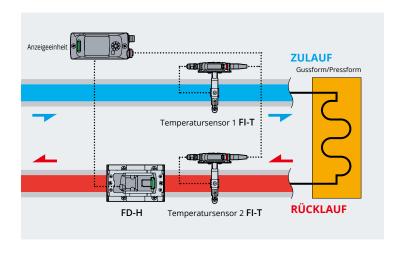
Innovatives Design für eine stabile Temperaturüberwachung

Die Modellreihe FI-T verwendet mehrere innovative Techniken, um eine zuverlässige Temperaturmessung von außerhalb des Rohres zu ermöglichen. Der Kontaktpunkt zwischen dem Sensor und der Rohroberfläche besteht aus einem weichen Metall, das sich gut an die Form des Rohrs anpasst. Zusätzlich wird eine spezielle Isolierung verwendet, um die Auswirkungen der Umgebungstemperatur auf ein Minimum zu reduzieren. Um einen zuverlässigen Messwert zu gewährleisten, wird zusätzlich ein Widerstandstemperaturfühler aus Platin verwendet.

Modellreihe FD-H

Einfache Installation

Keine Modifizierung des Rohres erforderlich


Die Montage der Sensoren erfolgt ohne Eingriffe in das Rohrsystem. Der Sensor wird einfach aufgesetzt und fixiert und die Montagezeit auf diese Weise minimiert. Die Modellauswahl umfasst verschiedene Modelle, die mit Rohren von ø8 mm bis ø220 mm kompatibel sind.

Auswerteeinheit mit Klarschriftanzeige

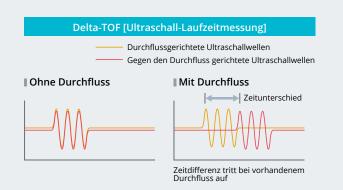
Gut ablesbares OLED-Display

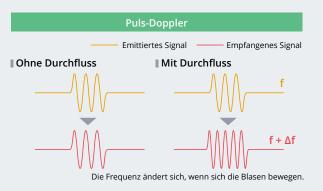
Die Temperatursensoren der Modellreihe FI-T können an die Anzeigeeinheiten der Modellreihen FD-H und FI-1000 angeschlossen oder ganz einfach als alleinstehender Sensor verwendet werden. Unabhängig von der Verwendung ermöglicht das OLED-Display immer eine einfache Überwachung der Werte und eine schnelle Anpassungsmöglichkeit der Einstellungen während des Betriebs.

Wärmemengenberechnung

Alles in einem System

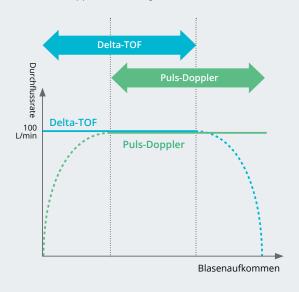
Wenn Sie zwei Temperatursensoren der Modellreihe FI-T mit der Modellreihe FD-H kombinieren, kann die Wärmemenge berechnet werden, die in ein System zu- oder aus einem System abgeführt wird. Für diese Berechnung sind keine weiteren Computer oder Peripheriegeräte notwendig.


Erkennungsprinzip und Technologien



Die Modellreihe FD-H ist mit einem Algorithmus und Erkennungsprinzip ausgestattet, das eine Erkennungsgenauigkeit von ±3,0% des Anzeigewerts ermöglicht. Die Sensoren sind auch gegenüber Alterung und Umweltveränderungen beständig und können so über eine lange Zeit eingesetzt werden.

Das Delta-TOF Erkennungsprinzip bestimmt die Durchflussrate durch die Messung der Zeitdifferenz von zwei Ultraschallsignalen zwischen dem Senden und Empfangen der Signale (in Flussrichtung und entgegen der Flussrichtung). Diese Zeitdifferenz spiegelt die Durchflussrate wieder. Durch die Verwendung von zwei Ultraschallsignalen bleiben die Messwerte konsistent und stabil, unabhängig von externen Faktoren, wie z. B. der Änderung der Temperatur.


Das Puls-Doppler-Prinzip bestimmt die Durchflussrate anhand der Frequenz eines Signals, das durch Blasen oder Partikel in der Flüssigkeit reflektiert wird. Je nach Durchflussrate verändert sich die Frequenz des emittierten und empfangenen Signals. Diese Frequenzdifferenz spiegelt die Durchflussrate wieder.

Hybrides Erkennungsprinzip

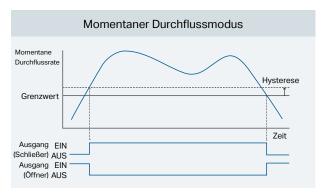
Delta-TOF (ohne Blasen)

Puls-Doppler (mit Blasen)

Das Hybrid-Erkennungsprinzip schaltet je nach Blasenaufkommen automatisch zwischen Delta-TOF und Puls-Doppler Erkennung um.

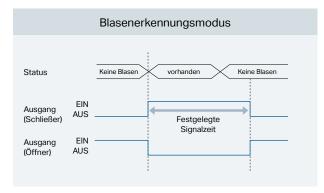
Beide Erkennungsprinzipien werden kontinuierlich und parallel zueinander überwacht. Das Sensor wechselt das Erkennungsprinzip automatisch, wenn sich die Menge der Blasen in der Flüssigkeit ändert. Dies gewährleistet einen nahtlosen Übergang und keine Verzögerung bei der Erfassung.

Standardmodell


Hochtemperaturmodell Automatische Korrektur der Schallgeschwindigkeit der Flüssigkeit

Ultraschall-Durchflusssensoren erfordern aufgrund der unterschiedlichen Eigenschaften von Flüssigkeiten in der Regel eine manuelle Korrektur der Erkennungswerte, um eine genaue Überwachung zu gewährleisten.

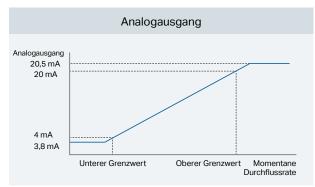
Die Modellreihe FD-H berechnet die Schallgeschwindigkeit der Flüssigkeit automatisch und stellt selbstständig einen Korrekturwert für die Messwerte ein, um eine maximale Erkennungsgenauigkeit erreichen zu können.


Verschiedene Erfassungsmodi für jede Anwendung

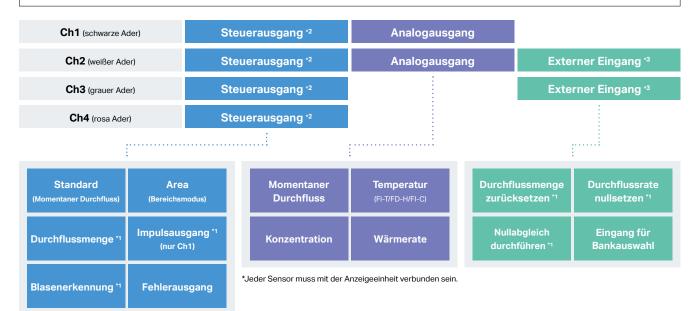
Sie möchten wissen, ob die momentane Durchflussrate sinkt


Die Signalausgabe ändert sich, wenn die momentane Durchflussrate einen festgelegten Grenzwert überschreitet.

Sie möchten wissen, ob sich Luftblasen in dem zu erkennenden Medium befinden


 $\label{lem:prop:prop:matrix} Dieser\ Modus\ erfasst\ Blasen\ im\ Medium\ bzw.\ im\ Rohr\ und\ bietet\ die\ M\"{o}glichkeit,\ ein\ festgelegtes\ Ausgangssignal\ zu\ schalten.$

Sie möchten wissen, ob die momentane Durchflussrate innerhalb eines zulässigen Bereichs liegt


Die Signalausgabe ändert sich, wenn die Durchflussrate außerhalb des zulässigen Bereichs liegt.

Sie möchten die momentane Durchflussrate an Peripheriegeräte übertragen

Die Ausgabe des Signals von 4–20 mA oder 0–20 mA hängt von den angegebenen unteren und oberen Grenzwerten ab. (Die Abbildung oben zeigt 4–20 mA.)

Verschiedene Eingangs- und Ausgangsfunktionen wählbar

^{*1} Nur Durchflusssensor *2 Konzentrationssensor: Trockenlauferkennung; Temperatursensor (wenn zwei Einheiten angeschlossen sind): Impulsausgabe für Wärmemenge (nur Ch1); Wärmeabgabe kann separat zugewiesen werden.

separia zugewiesen werden.

3 Konzentrationssensor: Haltewert für Konzentration; Temperatursensor (wenn zwei Einheiten angeschlossen sind): Zurücksetzeingang der Wärmemenge kann separat zugewiesen werden.

Standardmodell Hochtemperaturmodell Schlauchmodell **IO**-Link **❷ IO**-Link **IO**-Link ø13 bis ø44 mm ø13 bis ø44 mm ø13 bis ø63 mm Hybrides Erkennungsprinzip Hybrides Erkennungsprinzip Delta-TOF Delta-TOF + Puls-Doppler Delta-TOF + Puls-Doppler Kompatible Flüssigkeitstemperatur bis zu 85°C Kompatible Flüssigkeitstemperatur bis zu 180°C Kompatible Flüssigkeitstemperatur bis zu 100°C Integrierter Temperatursensor Erkennungsgenauigkeit ± 3,0% vom Anzeigewert Erkennungsgenauigkeit ± 3,0% vom Anzeigewert Wiederholgenauigkeit ± 0,3% vom Endwert* Wiederholgenauigkeit ± 0,3% vom Endwert* Wiederholgenauigkeit ± 0,3% vom Endwert* Automatische Korrektur der Schallgeschwindigkeit der Flüssigkeit Automatische Korrektur der Schallgeschwindigkeit der Flüssigkeit Sender/ Reflexionsmodell Reflexionsmodell Empfänger-Modell Integrierter **Hohe Temperaturen** Schlauchmontage bis 180°C Temperatursensor Die Halterung sorgt für einen gleichmäßigen Der integrierte Für Temperaturen bis zu

180°C mit

(separat erhältlich).

Standardkontaktplatte.

Bis 140°C mit der

Hochtemperaturkontaktplatte

Temperatursensor

Temperaturmessung.

ermöglicht eine zusätzliche

Druck auf sechs Seiter

zuverlässige und stabile

verformbaren Schläuchen.

des Schlauchs. Das ermöglicht eine

Erkennung auch bei

^{*} Bei einer Reaktionszeit von 5,0 s.

Modell

FD-H10

Anklemmbarer Durchflusssensor der Modellreihe FD-H

Standardmodell Kompatible Rohraußendurchmesser Nenndurchfluss Rohrgrößen (mm) 20 L/min 1/4" (8 A) ø13-16 30 L/min 3/8" (10 A) ø16-18 60 L/min 1/2" (15 A) ø18-23 100 L/min 3/4" (20 A) ø23-28 200 L/min 1" (25 A) ø28-37

300 L/min

IO-Link

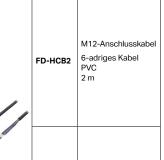
ø37-44

1 1/4" (32 A)

Bei 140°C oder weniger

Zwischen 140°C und 180°C

Hochtemperaturkontaktplatte


Wenn die Rohrtemperatur 140°C überschreitet, muss die Kontaktplatte ausgetauscht und die Anzeigeeinheit vom Sensor getrennt werden.

FD-HK1: für FD-H10K FD-HK2: für FD-H20K FD-HK3: für FD-H32K

Anschlusskabel Erforderlich Anschlusskabel mit M12-Stecker, 8-polig

Modell

Abbildung

	FD-HCB10	M12-Anschlusskabel
		6-adriges Kabel PVC
		10 m

Hochtemperaturmodell

Modell	Nenndurchfluss	Unterstützte Rohrgrößen	Rohraußendurchmesser (mm)
FD-H10K 20 L/min 30 L/min	1/4" (8 A)	ø13–16	
	30 L/min	3/8" (10 A)	ø16–18
FD-H20K	60 L/min	1/2" (15 A)	ø18–23
	100 L/min	3/4" (20 A)	ø23–28
FD-H32K	200 L/min	1" (25 A)	ø28–37
	300 L/min	1 1/4" (32 A)	ø37–44

IO-Link

Für einen Anschluss über IO-Link

Umrüstung auf ein 4-poliges M12-Kabel mit folgenden Adaptermöglichkeiten.

Abbildung	Modell	Übersicht
	FD-HCC2	M12-Adapterkabel 8-polige Buchse auf 4-poligen Stecker PVC 2 m
A SECTION ASSESSMENT	FD-HCC10	M12-Adapterkabel 8-polige Buchse auf 4-poligen Stecker PVC 10 m
	FD-HCC0	8-polige Buchse auf 4-poligen Stecker (Adpaterstecker)

Schlauchmodell

Modell	Nenndurchfluss	Rohraußendurchmesser (mm)
FD-H22F	60 L/min	ø13-22,9
FD-H32F	200 L/min	ø23-32,9
FD-H47F	300 L/min	ø33-47,9
FD-H63F	500 L/min	ø48-63

Montagehalterung

Kann zur Befestigung von Schlauchmodellen an Profilen usw. verwendet werden und ist mit allen Schlauchmodellen

kompatibel. FD-HFB1

Zubehör (für Anzeigeeinheit)

Zubehör für den Einsatz im Außenbereich Nur für Standardmodell

Robuste Schutzabdeckung für Außenbereich FD-HP2

Anschlusskabel FD-HCB10G M12-Anschlusskabel, 6-adrig, PVC, 10 m

Schutzabdeckung für Anzeigeeinheit

FD-HP1

^{*} Kann auch mit der Multisensor-Anzeigeeinheit FI-1000 verwendet werden.

Verbindungskabel zwischen Sensor- und Auswerteeinheit Optiona

Das Kabel wird bei separierter Verwendung der Anzeigeeinheit benötigt.

Abbildung	Modell	Übersicht
4	FD-HCS2	Verbindungskabel PVC, 2 m

Das Verbindungskabel kann durch M12-Steckerkabel um 18m verlängert werden (Gesamtkabellänge max.

1	OP-85503	2 m PVC
	OP-85504	5 m PVC
	OP-88075	2 m PUR
	OP-88076	5 m PUR

[■] Für die Ausgabe von Verlaufsdaten an einen PC: Es kann das USB-Kabel OP-51580 (2 m) oder OP-86941 (5 m) verwendet werden. Folgende Verlaufsdaten können ausgegeben werden: 1) Momentandaten und Stabilität für alle 10 Sekunden in den letzten 7 Tagen, 2) Momentandaten und Stabilität für alle 10 Minuten im letzten Jahr, 3) Durchflussmenge für jede Stunde im letzten Jahr, 4) Wärmemenge für jede Stunde im letzten Jahr, 5) Bis zu 100 Ereignisse.

Modellreihe FD-H

M12 Multi-Port

Der Y-Stecker ist erforderlich, wenn mehr als ein Sensor angeschlossen werden soll

FD-HY1

Multi-Port-Konfigurationen

Bei Verwendung des Y-Steckers können bis zu zwei Konzentrationsoder Temperatursensoren angeschlossen werden (je ein Konzentrationsund Füllstandsensor oder zwei Temperatursensoren).

Anzeigeeinheit (alleinstehend)

Als alleinstehende Anzeigeeinheit kann für den Anschluss der Sensoren eine Multisensor-Anzeigeeinheit verwendet werden.

FI-1000

Verbindungskabel, M8 4-polig auf M12 4-polig

Maximale Verlängerung von 20 m zwischen Auswerteeinheit des Temperatursensors und Anzeigeeinheit

Modell	Übersicht
OP-88456	2 m PVC
OP-88457	5 m PVC
OP-88071	2 m PUR
OP-88072	5 m PUR

Anklemmbarer Temperatursensor der Modellreihe FI-T

Modell	Kompatible Rohrgrößen	Rohraußendurchmesser (mm)
FI-T8	1/8", 1/4" (6 A/8 A)	ø8–14
FI-T15	3/8", 1/2" (10 A/15 A)	ø14–22
FI-T25	3/4", 1" (20 A/25 A)	ø22-38
FI-T50	1 1/4", 1 1/2", 2" (32 A/40 A/50 A)	ø38–70
FI-T100	2 1/2", 3", 3 1/2", 4" (65 A/80 A/90 A/100 A)	ø70–126
FI-T200	5", 6", 8" (125 A/150 A/200 A)	ø126–220

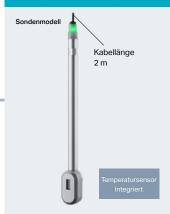
Verlängerungskabel M8 auf M8

Optional

Maximale Verlängerung von 20 m zwischen Auswerteeinheit und Sensorkopf

OP-88673 PVC, 2 m **OP-88672** PVC, 10 m

Installation


*Wenn Sie den Temperatursensor FI-T allein (Stand-Alone) verwenden, verwenden Sie ein 4-poliges M8-Anschlusskabel. (Beispiel: OP-87625 (PVC, 2 m), OP-87626 (PVC, 10 m), OP-87628 (PUR, 2 m), OP-87629 (PUR, 10 m)

Digitaler Brechungsindex-Konzentrationssensor der Modellreihe FI-C

Modell

Modell

FI-C40F

FI-C20D	Sondenmodell	
Optional		
Abbildung	Modell	Übersicht
	FI-CDB1	Montagehalterung für das Sondenmodell
	FI-CD1	Verlängerungsrohr 0,4 m
	FI-CD2	Verlängerungsrohr 0,8 m

Verbindungskabel, M12 4-polig auf M12 4-polig

Bei einer Kabellänge von

über 2 m.

Maximale Verlängerung von 20 m zwischen Auswerteeinheit des Konzentrationssensors und Anzeigeeinheit (das Anschlusskabel des Fl-C40F muss nicht berechnet werden).

Modell	Übersicht
OP-85503	2 m PVC
OP-85504	5 m PVC
OP-88075	2 m PUR
OP-88076	5 m PUR

Inline-Modell

	entsprechenden Montageadapter			
Optional	Optional			
Abbildung	Modell Übersicht			
00	FI-CF1	Montageadapter Rc 3/4		
	FI-CF3	Montageadapter NPT 3/4		
00	FI-CF2	Montageadapter Rc 1 1/2		

Installation

Montage im Rohr mit einem

Тур		Standardmodell/Hochtemperaturmodell (K) Schlauchmodell					chmodell				
Modell			-H10 H10K		H20 H20K		H32 132K	FD-H22F	FD-H32F	FD-H47F	FD-H63F
	Rohraußendurchmesser	ø13–16	ø16–18	ø18–23	ø23-28	ø28-37	ø37-44	ø13-22,9	ø23–32,9	ø33–47,9	ø48-63
Rohrgröße	DN (Rohrnennweite)	8 A	10 A	15 A	20 A	25 A	32 A		-	_	
	NPS (Rohrnennweite)	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"	D.1			10 1
Unterstützte Rohrmaterialie	en	Ro	Rohrleitungen aus Metall, Rohrleitungen aus Hartkunststoff* Rohre aus weichem Kunststoff, alle Schläuche (geflochtene Schläuche, druckfeste Gummischläuche usw.)*								
Unterstützte Flüssigkeiten			Alle Flüssigkeiten (Wasser, Öl, Chemikalien usw.)*1								
Unterstützte Flüssigkeitste			Standardmodell: 0°C bis 85°C (kein Vereisen an der Rohroberfläche)*2 Hochtemperaturmodell 0°C bis 180°C (kein Vereisen an der Rohroberfläche)*2 0°C bis 100°C (kein Vereisen an der Rohroberfläche)*2								
(Rohroberflächentemperatur)		Hochtempe	eraturmodell 0	°C bis 180°C (kein Vereisen	an der Rohrob	perfläche)*2,3		1		1
Nenndurchfluss		20 L/min	30 L/min	60 L/min	100 L/min	200 L/min	300 L/min	60 L/min	200 L/min	300 L/min	500 L/min
Nullpunktdurchfluss (variab	oel, Ausgangswert)	0,31	L/min		_/min		_/min	0,5 L/min	1,0 L/min	2,0 L/min	5,0 L/min
Erkennungsprinzip			Delta To	OF Laufzeitme	ssung + Puls	-Doppler			Delta TOF La	ufzeitmessung	
Funktion zur automatischer Schallgeschwindigkeit in Fl					Ja				-		
Display				Q\	/GA 2,0"-LCD	-		zeige, Ausgang:	sanzeigen		
Aktualisierungsrate der An	Durchflussrate (L/min)		0,01/0,1/1 (Sta	undardwart: 0	1)		Mal pro Sekur		andardwert 0,1)	0.01/0.1/1/0	andardwert: 1)
Anzeigeauflösung				/0.1/1	1)	+	0.1/1		/0,1/1		/0.1/1
, in 2019 during during	Durchflussmenge (L)	(St	andardwert: 0		llen)				,1 bis zu 8 Stellen)		
Ansprechzeit					0,5 s/1,0 s	/2,5 s/5,0 s/10	0,0 s/30,0 s/60	,0 s/120,0 s/200	0,0 s		
Messgenauigkeit	Zwischen 10% und 100% des Messbereichs	±3,0% vom Anzeigewert*4,5				_					
	Zwischen 0% und 10% des Messbereichs	±0,3% vom Endwert*4.5									
Wiederholgenauigkeit*4,6	0,5 s: ±1,0%, 1 s: ±0,7%, 2,5 s: ±0,45%, 5 s: ±0,3%, 10 s: ±0,2%, 30 s: ±0,15%, 60 s: ±0,1% vom Endwert Variabel										
Hysterese Durchflusseinheit		Variabei L/min m³/h.									
Einstellbare Impulsmengen	2(1)						,02–999,99				
Messgenauigkeit der Rohrtemperatur (Umgebungstemperatur 25°C)*4						0°C bis 50°C)	,		-		
(omgozangotomporatar 20	Einheit	±3,0°C (Rohrtemperatur 50°C bis 85°C) Hochtemperaturmodell: — MJ/h, kW, kBTU/h									
Wärmemengenberechnung*7	Anzeigeauflösung	Momentanwert (MJ/h): 0,01/0,1/1 (Standardwert 0,1); Wärmemenge (MJ): 0,01/0,1/1 (Standardwert 0,1)									
warmemengenberechnung /	Stufen der Impulsausgabe (MJ)	0,02–999,99									
Datenaufzeichnung	Aufzeichnungszeitraum						Ca. 1 Jahr				
	Kommunikationsschnittstelle						USB 2.0				
E/A-Verdrahtung Anschluss	5						-poliger Steck		-		
E/A	Ausgang (Ch1/2/3/4)				haltbar, offen	er Kollektor-A	usgang max. 3	0 VDC, max. 10	0 mA/Ch, Rests	ssungsmodus/F pannung max. 2,	
(umschaltbar)	Analogausgang (Ch1/2)							twiderstand ≤50			
	Externer Eingang (Ch2/3)		Eingan	g Menge zurü	Kurzs	chlussstrom: ≤	1,5 mA; Einga	ngszeit: ≥20 ms		Bankeingang	
Spannungsversorgung	Versorgungsspannung							klusive, Klasse 2			
Schutzschaltung	Stromverbrauch	Cob							gausgang; ohne		
Netzwerkkompatibilität		Schutz gegen Verpolung, Überspannungen der Stromversorgung, Kurzschlüsse am Ausgang und Überspannungen am Ausgang IO-Link*9									
Netzwerkkompatibilität	Schutzklasse	IP65/67 (IEC 60529)*10									
	Umgebungstemperatur im Betrieb		S	ensoreinheit: -	-20°C bis +60				+50°C (kein Ver	eisen)*2	
Umgebungsbeständigkeit	Relative Luftfeuchtigkeit im Betrieb					35-85% RL	(keine Konder	nsation)			
	Schwingungsfestigkeit			10–50	0 Hz; spektra	e Leistungsdid	chte: 0,816 G ²	'Hz in X-, Y-, Z-A	chsenrichtung		
	Stoßfestigkeit			10	00 m/s² (ca. 1	OG),16 ms lmp	ulse, je 1000	Mal für X-, Y- und	d Z-Achse		
	Anzeigeeinheit					Gehäuse: PPS	/PET/POM; An				
Material	Sensorkopf		Hochtempe	Standardmode eraturmodell: P	EEK/PPS/PET/I		YM7		element: Spezialo	AR/SUS304; Kabel jummi; Montageh SUS304/SUSXM7	
		Sen	isoreiement: 50								

*1 Für Flüssigkeiten, durch die sich Ultraschallwellen ausbreiten und die keine große Menge an Blasen enthalten. Je nach Art und Zustand der Rohre ist die Erfassung möglicherweise instabil.

*2 Wenn die Anzeigeeinheit direkt an der Sensoreinheit montiert ist, ist die Messung entsprechend der Umgebungstemperatur und Flüssigkeitstemperatur ungenauer. *3 Wenn Sie Flüssigkeiten bei Temperaturen von 140°C oder höher verwenden, verwenden Sie eine separat erhätliche Hochtemperaturkontaktplatte FD-HK1/HK2/HK3. Darüber hinaus muss die Anzeigeeinheit von der Sensoreinheit getrennt werden. *4 Dies ist der garantierte Wert, der in KEYENCE-Prüfeinrichtungen ermittelt wurde. Messfehler können je nach Typ und Zustand der Rohrleitungen des Kunden, Art und Temperatur der Flüssigkeit sowie anderen Faktoren auftreten. *5 Dies ist der Wert, wenn der Nullpunkt für eine Umgebung mit einer konstanten Temperatur von 25°C unter Berücksichtigung der Linearität und des Messspannenfehlers angepasst wird. *6 In einem Zustand, in dem die Strömungsgeschwindigkeitsverteilung stabil ist. Enthält keine Pulsation und Schwankungen der Strömungsgeschwindigkeitsverteilung aufgrund von Gerätefaktoren. Bitte auch den angegebenen Endwert unter Verwendung des Nenndurchflussbereichs konvertieren.

*7 Kann verwendet werden, wenn zwei Temperatursensoren (separat erhältlich) angeschlossen sind. *8 640 mA oder weniger einschließlich Last. Wenn Sie Sensoren wie Temperatursensoren anschließen, addieren Sie bitte die Stromaufnahme jedes Sensors (max. 830 mA oder weniger). *9 Unterstützt 10-Link-Spezifikation v.1.1/COM2 (38,4 kBit/s). Die Einstellungsdateien können von der KEYENCE-Website heruntergeladen werden (www.keyence.de), IO-Link ist eine Marke oder eine eingetragene Marke der PROFIBUS Nutzerorganisation e.V. (PNO). *10 Bei Verwendung eines USB-Anschlusses kann die Schutzklasse IP65/67 nicht gewährleistet werden.

Flüssigkeitstemperatur (°C)

Standardmodell

Umgebungstemperatur im Betrieb (°C)

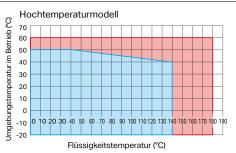
70

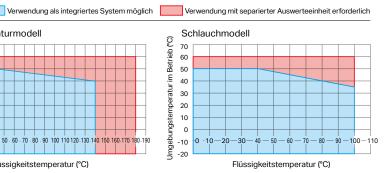
60

50

40

30


20


10

0

-10

-20

20

Temperatursensor (FI-T)

Modell			FI-T8	FI-T15	FI-T25	FI-T50	FI-T100	FI-T200	
	Rohraußendur	rchmesser	ø8–14	ø14–22	ø22-38	ø38-70	ø70–126	ø126-220	
Kompatible Rohrdurchmesser	DN (Rohrnenn	weite)	6A, 8 A	10 A, 15 A	20 A, 25 A	32 A, 40 A, 50 A	65 A, 80 A 90 A, 100 A	125 A, 150 A 200 A	
	NPS (Rohrnen	nweite)	1/8", 1/4"	3/8", 1/2"	3/4", 1"	1 1/4", 1 1/2", 2"	2 1/2", 3" 3 1/2", 4"	5", 6", 8"	
Compatibles Rohrmaterial			Metallrohre						
Kompatibler Temperaturbe	reich				-20°C b	is +180°C*1			
Anzeigeauflösung					(,1°C			
nsprechzeit					5 s (50% Reaktion)	15 s (90% Reaktion)*2			
littelwertbildung der Ausv	verteeinheit				0,1 s/10,0 s/20,0 s/30,	0 s/60,0 s/120,0 s/300,0 s	3		
Messgenauigkeit bei einer (Umgebungstemp	peratur 25°C)					atur -20°C bis +80°C)*2,3 atur 80°C bis 180°C)*2,3			
Hysterese					Variabe	einstellbar			
Messprinzip			Pt100 4-poliges Kabelmodell						
Anzeigemethode			OLED-Display, Status-LED						
E/A-Anschluss, Anschluss der Spannungsversorgung			M8 4-poliger Anschluss						
Stromverbrauch			≤20 mA (außer Laststrom)*4						
	Eingang/ Ausgang	Ausgang (Ch1/Ch2)	Steuerausgang: NPN/PNP-Einstellung umschaltbar Offener Kollektor-Ausgang: ≤30 VDC, Maximum ≤100 mA/Ch, Restspannung ≤2,5 V						
Bei Verwendung ohne Anzeigeeinheit	(umschaltbar)	Analogausgang (Ch2)		4–20 n	nA/0-20 mA (umschalt	bar), Lastwiderstand max	. 260 Ω		
Stand-Alone)*5	Versorgungss	pannung	20 bis 30 VDC, Restwelligkeit (P-P) von 10% inklusive; Klasse 2/LPS						
	Schutzschaltung		Verpolungsschutz, Überspannungsschutz, Kurzschlussschutz am Ausgang, Überspannungsschutz am Ausgang						
	Kommunikatio	on			IO-	Link*6			
	Schutzart		IP65/IP67 (IEC60529)						
	Umgebungstemperatur im Betrieb		-10°C bis +60°C (kein Vereisen)						
Jmgebungsbeständigkeit	Relative Luftfe Betrieb	euchtigkeit im	35% bis 85% RL (keine Kondensation)						
	Schwingungsf	festigkeit	10-500 Hz; spektrale Leistungsdichte: 0,816 G²/Hz in X-, Y-, Z-Achsenrichtung						
	Stoßfestigkeit			100 m/s² (ca	a. 10 G),16 ms Impulse	, je 1000 Mal für X-, Y- und	Z-Richtung		
	Auswerteeinh	eit	PBT/PAR/POM/SUS303						
Verkstoff	Sensorkopf			Haupteinheit: PPS	/SUS303/Sn; Rohrsch	elleneinheit: SUS304; Kab	el: Fluorkunststoff		
	Montagehalte Auswerteeinh				SU	JS304			
Sewicht			Ca. 70 g	Ca. 80 g	Ca. 65 g	Ca. 70 g	Ca. 100 g	Ca. 120 g	

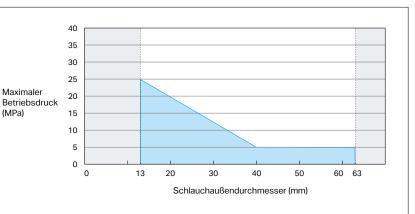
^{*1} Bei einer Rohrtemperatur von 100°C oder mehr kann die Auswerteeinheit nicht an der Rohrschelleneinheit montiert werden. Montieren Sie die Auswerteeinheit so, dass sie von der Wärme des Rohrs isoliert ist. *2 Dies ist der garantierte Wert, der in KEYENCE-Prüfeinrichtungen ermittelt wurde. Messfehler können je nach Typ und Zustand der Rohrleitungen und Flüssigkeiten des Kunden, der Umgebungstemperatur und anderen Faktoren auftreten. *3 Dies ist der Wert für eine Umgebung mit einer konstanten Temperatur von 25°C unter Berücksichtigung des absoluten Fehlers und der Wiederholbarkeit. *4 Bei Verwendung als alleinstehender Sensor (Stand-Alone) maximal 220 mA einschließlich Last. *5 Befolgen Sie beim Anschließen an ein Modell der Modellreihe FD-H/FI-1000 die Spezifikationen der Anzeigeeinheit/des Sensors. *6 Unterstützt IO-Link-Spezifikation v.1.1/COM2 (38,4 kBit/s). Die Einstellungsdateien können von der KEYENCE-Website heruntergeladen werden (www.keyence.de). IO-Link ist eine Marke oder eine eingetragene Marke der PROFIBUS Nutzerorganisation e.V. (PNO).

Konzentrationssensor (FI-C)

Тур		Sondenmodell	Inline-Modell			
Modell	Sensor	FI-C20D	FI-C40F			
Modell	Montageadapter	_	FI-CF1/CF3 FI-CF2/4			
Erkennungsprinzip		Brechungsin	dextyp (planare Lichtquelle)			
Nennkonzentrationsbere	eich	Brix: 0-20% (nD: 1,32500-1,37000)	Brix: 0–40% (nD: 1,32500–1,41000)			
Anzeigebereich		Brix: 0–25%	Brix: 0–50%			
Kompatible Flüssigkeit		8 8 1	z. B. wasserlösliche Kühlmittel, Formtrennmittel usw.)*1			
Kompatible Flüssigkeitst	temperatur	0°C bi	ois 70°C (kein Vereisen)			
Anschlussdurchmesser		_	FI-CF1: Rc3/4 (20 A); FI-CF3: NPT3/4 FI-CF2: Rc1 1/2 (40 A); FI-CF4: NPT1 1/2			
Nenndruckbereich	kbereich — ≤1,0 MPa					
Druckbeständigkeit		_	2,0 MPa			
Anzeigeauflösung		Brix: 0,01/	(0,1% (Standardwert: 0,1) (nD: 0,00001)			
Ansprechzeit		1,0 s/2,5 s/5,0 s/10	0,0 s/30,0 s/60,0 s/120,0 s/200,0 s			
Erkennungsgenauigkeit		Brix: ±0	: ±0,2%* ^{2,3} (nD: ±0,0003)			
Konzentrationseinheit			Brix nD*₄			
Temperaturmessgenauig	gkeit		±1,0°C*2			
Anzeigemethode	,		Statusanzeige			
Stromaufnahme		25 mA oder weniger				
	Schutzart	IP65/IP67 (IEC60529)				
	Umgebungstemperatur im Betrieb	-10°C bi	sis +60°C (kein Vereisen)			
Umgebungsbeständigkeit	Relative Luftfeuchtigkeit im Betrieb	35% bis 85	5% RL (keine Kondensation)			
	Schwingungsfestigkeit	10–500 Hz; spektrale Leistungs	sdichte: 0,816 G²/Hz in X-, Y-, Z-Achsenrichtung			
	Stoßfestigkeit	100 m/s² (ca. 10 G),16 ms lm	npulse, je 1000 Mal für X-, Y- und Z-Richtung			
	Erkennungsfläche und Kontaktflächen des Sensors	Erkennungseinheit: synthetisches Quarz Gehäuse: Aluminiumdruckguss (vernickelt/verchromt)/SUS304 Rohr: Aluminiumlegierung (eloxiert); Dichtung: FKM	Erkennungseinheit: Saphir Gehäuse: SCS16A; Dichtung: FFKM			
Werkstoff	Montageadapter	_	Gehäuse: SCS16A; Dichtung: FKM			
	Bereich ohne Kontakt zu Flüssigkeiten	Display-Anzeige: PPSU/TPU/PBT Kabel: PUR	Gehäuse: SUS304; PPS Display-Anzeige: PPSU/TPU/PBT Kabel: PVC			
Gewicht		Ca. 480 g	Haupteinheit: ca. 410 g; FI-CF1/CF3: ca. 790 g; FI-CF2/CF4: ca. 1360 g.			

^{*1} Verwenden Sie Wasser als Lösungsmittel und ein zusätzliches Medium, das sich in Wasser auflöst. Wenn sich die Partikel nicht in Wasser auflösen, wie bei einer aufgeschlämmten Flüssigkeit, ändert sich der Brechungsindex möglicherweise nicht. *2 Dies ist der garantierte Wert, der in KEYENCE-Prüfeinrichtungen ermittelt wurde. Messfehler können je nach Typ, Zustand und Temperatur der vom Kunden verwendeten Flüssigkeit sowie anderen Faktoren auftreten. *3 Dies ist der Wert, der bei der Verwendung von Saccharose-Lösung in einer Umgebung mit einer konstanten Temperatur von 20°C erzielt wird. Dabei wurden absolute Fehler und Wiederholbarkeit berücksichtigt. *4 Bei Verwendung anderer Lösungen als Saccharose-Lösungen kann die Konzentration über einen Span-Korrekturwert eingestellt werden.

Anzeigeeinheit (FI-1000)


Modell		FI-1000			
Anzeige		QVGA 2,0"-LCD-Farbmonitor, LED-Statusanzeige, Ausgangsanzeigen			
Aktualisierungsrate der Anze	eige	Ca. 10 Hz			
	Einheit	MJ/h, kW, kBTU/h, GJ/h, MW, MBTU/h			
Wärmeberechnungsfunktion*1	Anzeigeauflösung	Momentanwert (MJ/h): 0,01/0,1/1 (Standardwert 0,01); Wärmemenge (MJ): 0,01/0,1/1 (Standardwert 0,01)			
	Stufen der Impulsausgabe (MJ)	0,02–999,99			
D. (.)	Aufzeichnungszeitraum	Ca. 1 Jahr			
Datenaufzeichnung		USB 2.0			
Anschluss 8-poliger M12-Stecker		8-poliger M12-Stecker			
E/A (umschaltbar)	Ausgang (Ch1/2/3/4)	NPN/PNP-Einstellung umschaltbar, offener Kollektor-Ausgang max. 30 VDC, max. 100 mA/Ch, Restspannung max. 2,5 V			
	Analogausgang (Ch1/2)	4–20 mA/0–20 mA (umschaltbar), Lastwiderstand ≤500 Ω			
(umschaitbai)	Externer Eingang (Ch2/3)	Kurzschlussstrom: ≤1,5 mA; Eingangszeit: ≥20 ms			
	Versorgungsspannung	20-30 VDC, Restwelligkeit (P-P) 10% inklusive, Klasse 2/LPS			
Spannungsversorgung	Stromaufnahme	≤55 mA (eigenständige Anzeigeeinheit, außer Laststrom)*2			
Schutzschaltung		Verpolungsschutz der Spannungsversorgung, Überspannungsschutz der Spannungsversorgung, Kurzschlussschutz für jeden Ausgang, Überspannungsschutz für jeden Ausgang			
Netzwerkkompatibilität		IO-Link*3			
	Schutzart	IP65/IP67 (IEC60529)*4			
	Umgebungstemperatur im Betrieb	-20°C bis +50°C (kein Vereisen)			
Umgebungsbeständigkeit	Relative Luftfeuchtigkeit im Betrieb	35% bis 85% RL (keine Kondensation)			
	Schwingungsfestigkeit	10-500 Hz; spektrale Leistungsdichte: 0,816 G²/Hz in X-, Y-, Z-Achsen			
	Stoßfestigkeit	100 m/s² (ca. 10 G),16 ms Impulse, je 1000 Mal für X-, Y- und Z-Achse			
Werkstoff		Gehäuse: PPS/PET/POM; Anzeige: PAR			
Gewicht		Ca. 120 g			

- 1 Verfügbar, wenn der separat erhältliche Durchflusssensor der Modellreihe FD-R und zwei Temperatursensoren angeschlossen sind.
- *2 Max. 455 mA einschließlich Last. Wenn Sie Sensoren wie Temperatursensoren anschließen, addieren Sie bitte die Stromaufnahme jedes Sensors (max. 830 mA oder weniger).

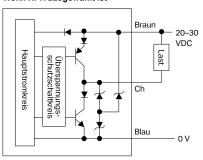
 *3 Unterstützt IO-Link-Spezifikation v.1.1/COM2 (38,4 kBit/s). Die Einstellungsdateien können von der KEYENCE-Website heruntergeladen werden (www.keyence.de). IO-Link ist eine Marke oder eine eingetragene Marke der PROFIBUS Nutzerorganisation e.V. (PNO). *4 Bei Verwendung eines USB-Anschlusses wird die Übereinstimmung mit IP65/67 beeinträchtigt.

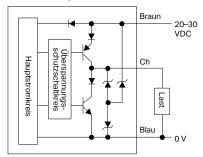
■ Hinweis zum Betriebsdruck

Je höher der maximale Nutzungsdruck bei Verwendung eines Hochdruckschlauchs und je größer der Querschnitt, desto größer ist das Risiko, dass die integrierten Geflechte und Drähte verformt werden, was zu einem Abfall der Ultraschallsignalstärke des Schlauchmodells der Modellreihe FD-H führt. Die blauen Druckbereiche sind als Richtlinie für den Betriebsdruck anzusehen.

Bei der Modellreihe FD-H stehen vier E/A-Adern zur Verfügung, die Kanal (Ch) 1-4 benannt sind. Kanal 1-4 kann als externer Eingang, Steuerausgang oder Analogausgang festgelegt werden. Je nach Funktion verändert sich die Verdrahtung.

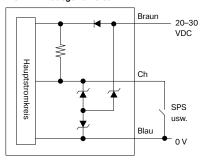
Aderfarbe	Funktion
Braun	Versorgungsspannung + 20–30 VDC
Blau	GND
Schwarz (Ch1)*1	Steuerausgang oder Analogausgang wählbar
Weiß (Ch2)	Steuerausgang, Analogausgang oder externer Eingang wählbar* ²
Grau (Ch3)	Steuerausgang oder externer Eingang wählbar*2
Rosa (Ch4)	Steuerausgang nicht wählbar


- *1 Wenn IO-Link verwendet wird, dient diese Ader der Kommunikation über IO-Link zum Master. Beachten Sie auch, dass nur Ch1 den Impulsausgang unterstützt.
- *2 Bei Verwendung des Eingangs für Reihenwechsel sind zwei externe Eingänge notwendig. Stellen Sie sowohl Ch2 als auch Ch3 auf externen Eingang ein.
- *3 Bei Verwendung eines M12 8-poligen zu 4-poligen Adapterkabels oder Adaptersteckers können die vier Adern – braun, blau und schwarz für Ch1 und weiß für Ch2 – wie folgt verwendet werden.

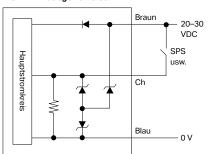

- ① Braun
- ③ Blau
- ② Weiß (Ch2)
- 4 Schwarz (Ch1)

(1) Verdrahtung als Steuerausgang

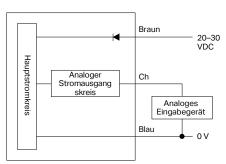
Wenn NPN ausgewählt ist



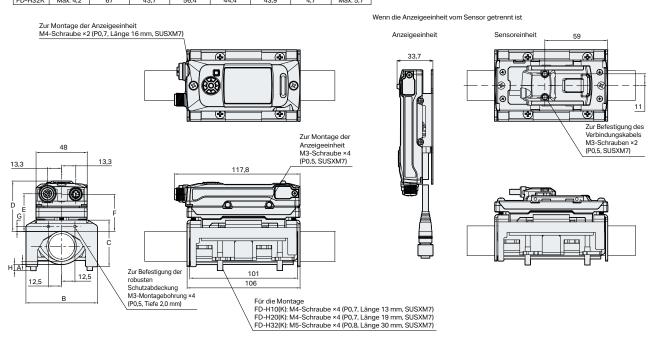
Wenn PNP ausgewählt ist

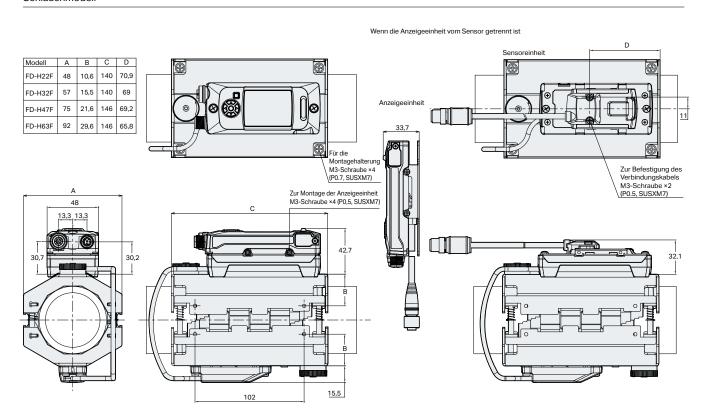


(2) Verdrahtung als externer Eingang


Wenn NPN ausgewählt ist

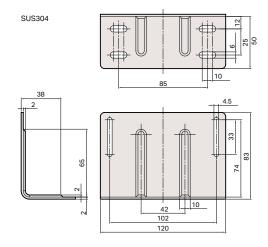
Wenn PNP ausgewählt ist


(3) Verdrahtung als Analogausgang


*Kann in den Einstellungen auf 4–20 mA oder 0–20 mA umgeschaltet werden

Standard modell/Hoch temperatur modell

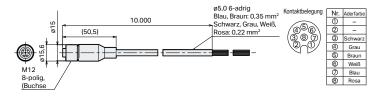
Modell	Α	В	С	D	E	F	G	Н
FD-H10	2	38	25,3	47,4	35,4	34,9	5,2	Max. 1,6
FD-H20	Max. 2,5	48	30	47,4	35,4	34,9	4,1	Max. 3,4
FD-H32	Max. 4,2	67	43,7	47,4	35,4	34,9	4,7	Max. 5,7
FD-H10K	2	38	25,3	56,4	44,4	43,9	5,2	Max. 1,6
FD-H20K	Max. 2,5	48	30	56,4	44,4	43,9	4,1	Max. 3,4
ED-H33K	May 4.2	67	43.7	56.4	44.4	43.0	47	May 5.7



Schlauchmodell


Montagehalterung

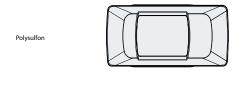
FD-HFB1



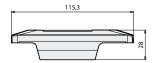
Netzkabel FD-H

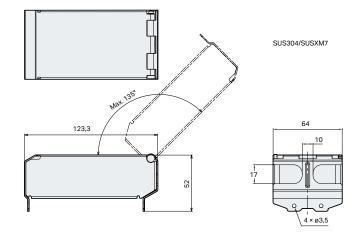
M12-Anschlusskabel,

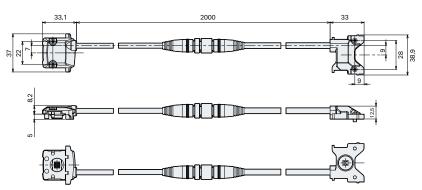
M12-Anschlusskabel (für den Einsatz im Freien), (offene Enden) **FD-HCB10G**

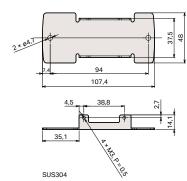

Robuste Schutzabdeckung für den Außenbereich (FD-H Standardmodell)

Schutzabdeckung der Anzeigeeinheit FD-H

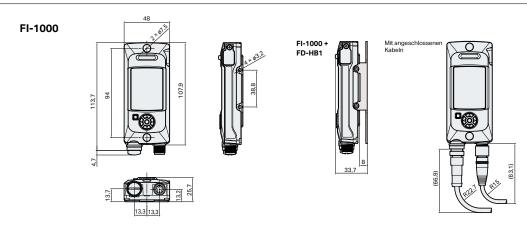



FD-HP2

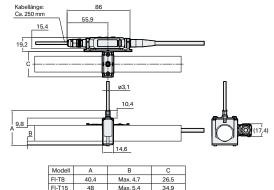


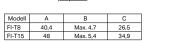

Verbindungskabel zwischen Sensoreinheit und Anzeigeeinheit

Montagehalterung der Anzeigeeinheit

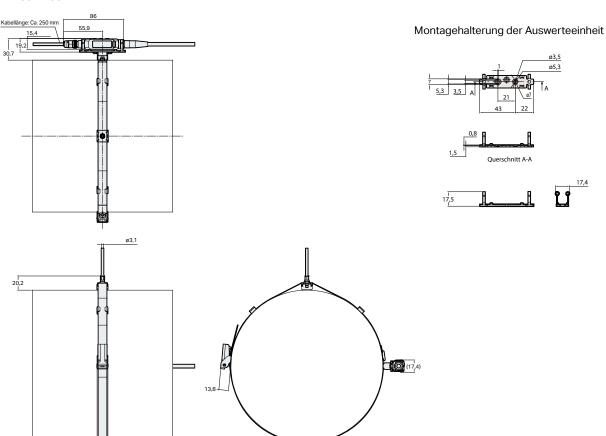

FD-HCS2

FD-HB1

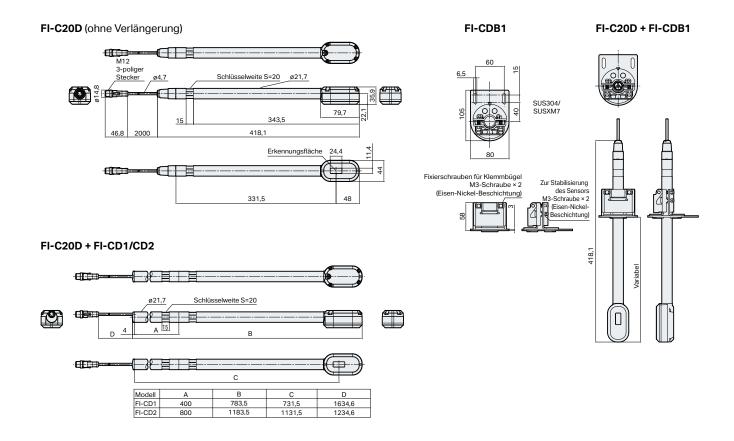



Anzeigeeinheit (FI-1000)

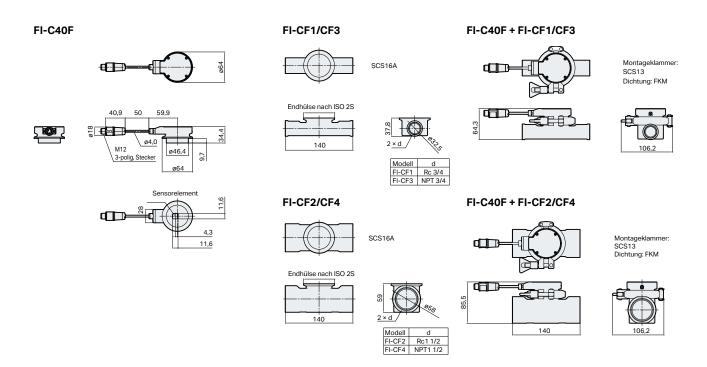
Temperatursensor (FI-T)



15,5

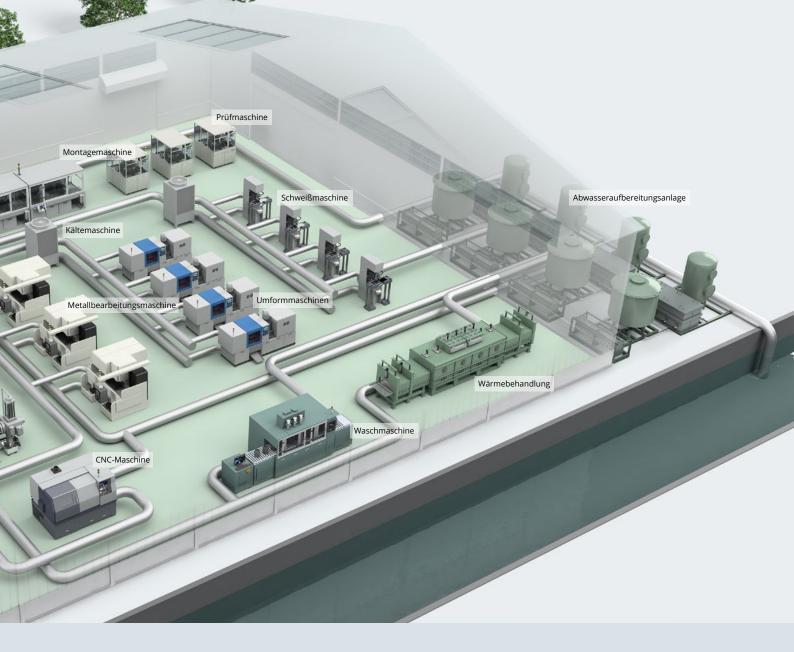

(+Schraube #2/-Schraul

FI-T100/T200



Konzentrationssensor (FI-C)

Sondenmodell


Inline-Modell

Bei welchen Prozessen oder Maschinen werden Flüssigkeiten verwendet?

Flüssigkeiten			Prozesse und Maschinen			
Wasser	Öle		Formteile/Guss	Waschen/Reinigen		
Chemikalien	Kühlmittel		Schweißen	CNC/Schleifen		
Fett	Haftmittel		Induktionserwärmung	Montage		
VE-Wasser	Produkt		Abwasseraufbereitung	Mischen		

Welche Gefahr besteht, wenn die Durchflussrate nicht korrekt ist?

Bei unzureichender Durchflussrate können Schäden an der Anlage oder dem Produktionsprozess entstehen. Das kann Probleme und negative Folgen mit sich bringen.

Beschädigte Maschinen oder Produkte

Stillstandzeiten

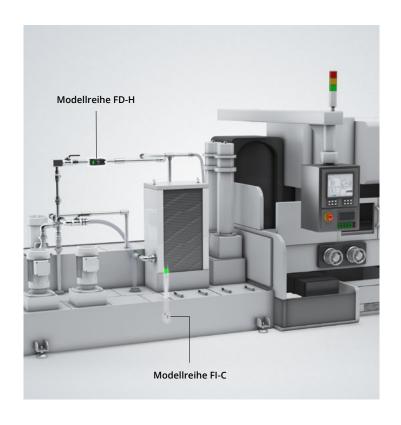
Ausschussteile

Verschwendete Ressourcen

Wie überwachen Sie die Durchflussraten?

Um Probleme zu vermeiden, ist es notwendig, den Durchfluss kontinuierlich zu überwachen und potenzielle Probleme schnell zu erkennen. Die Überwachung kann auf verschiedene Wege durchgeführt werden.

Keine Überwachung


Sichtprüfungen

Mechanische Sensoren

Hochpräzise Messsensoren

ANWENDUNGSBEISPIELE

Komplette Prozessüberwachungsanwendungen



Metallbearbeitungsmaschinen

(CNC-Maschinen/Schleifmaschinen)

Flüssigkeit	Wasserlösliches Kühlmittel
Durchfluss	Modellreihe FD-H
Konzentration	Modellreihe FI-C
Temperatur	Modellreihe FI-C/FI-T

Die gleichzeitige Überwachung von Durchfluss, Konzentration und Temperatur des wasserlöslichen Kühlmittels stellt sicher, dass die Qualität der Teile erhalten bleibt und potenzielle Probleme sofort erkannt werden. Alles, von der richtigen Kühlmittelkonzentration bis hin zur möglichen Blockierung des Durchflusses kann in einem System überwacht werden.

Druckgussmaschinen

Flüssigkeit	Kühlwasser für Matrizen
Durchfluss	Modellreihe FD-H
Temperatur	Modellreihe FI-T
Flüssigkeit	Wasserlösliches Entformungsmittel
Konzentration	Modellreihe FI-C

Neben der Überwachung des Durchflusses des Kühlwassers in Gussformen sind zwei Temperatursensoren an der Einlass- und Auslassseite installiert, um die Wärmeübertragung zu bestimmen. Durch die Überwachung der Wärmeübertragung ist es leicht zu erkennen, ob die Matrizen ordnungsgemäß beheizt und gekühlt werden. Darüber hinaus wird durch die Überwachung der Konzentration des wasserlöslichen Entformungsmittels sichergestellt, dass das Produkt jedes Mal richtig freigegeben wird.

Umformmaschinen

(technische Kunststoffe und glasfaserverstärkte Harze)

Flüssigkeit	Öl zur Temperaturregelung der Formen
Durchfluss	Modellreihe FD-H
Temperatur	Modellreihe FI-T

Für die Matrizen von Kunststoffen und glasfaserverstärkten Harzen wird Hochtemperaturöl verwendet. Für die Prozessqualität ist es wichtig, die Temperaturen der Formen ordnungsgemäß aufrechtzuerhalten. Dazu ist es wichtig, die korrekte Durchflussrate in den Matrizen zu überwachen. Zusätzlich kann ein Temperatursensor die Temperatur des Öls überwachen, um sicherzustellen, dass das Öl im richtigen Temperaturbereich ist.

Induktionshärtemaschinen

Flüssigkeit	Abschreckwasser
Durchfluss	Modellreihe FD-H
Konzentration	Modellreihe FI-C
Temperatur	Modellreihe FI-C/FI-T

Bei der Induktionshärtung ist die richtige Temperierung von entscheidender Bedeutung. Nicht nur der Durchfluss der Flüssigkeit ist wichtig, sondern auch ihre Temperatur und Konzentration. Alle diese Variablen können gleichzeitig überwacht werden, um die richtige Qualität und Festigkeit der Teile zu gewährleisten.

Netzwerk-Kommunikationsmodul der Modellreihe NQ

Vereinfachte Integration

Alle Systeme

Alle Geräte

Alle Standorte

I Einfache Monitoring

Frei konfigurierbare Darstellung

Visualisierung und Datenvergleich

Vereinfachte vorbeugende Wartung

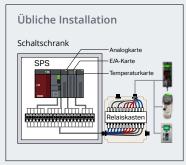
Intuitive Software

Einfache PC- oder Remoteverbindung

Automatische Geräteerkennung

Einfache Echtzeitkonfiguration

Verschiedene Netzwerkprotokolle


EtherNet/IP®

PROFINET

Modbus/TCP und mehr

Was ist IO-Link?

Die Kommunikation über IO-Link macht es möglich, große Informationsmengen über einen einzigen Verbindungspunkt mit einem IO-Link Master zu teilen. Der IO-Link Master wandelt diese Informationen dann für die Kommunikation mit einer SPS in ein gemeinsames Netzwerkprotokoll.

Anklemmbarer Durchflusssensor der Modellreihe FD-R

HAUPTMERKMALE:

■ Einfache Montage an Rohren mit einem Durchmesser von 1 ½" bis 8"

■ Hohe Umweltbeständigkeit mit Schutzart IP-65/67/69K und NEMA 4X

Leistungsstarke Erkennung und Regelung der Signalstärke für eine dauerhaft stabile Überwachung

Überwachung des Kühlturms

Abwasserüberwachung

Große Mischer und Mengen

Durchflusssensoren

Kompatible Rohrgröße (Außendurchmesser)	Abbildung	Nennbereich der Durchflussgeschwindigkeit	Bereich der Durchflussrate (typisch)	Gewicht	Modell
1 1/2" (40A) (ø44 bis ø55)			36–400 L/min 2.4–24 m³/h	Ca.	FD D50
2" (50A) (ø55 bis ø64)			36–600 L/min 2.4–36 m³/h	2,5 kg	FD-R50
2 1/2" (65A) (ø64 bis ø83)			90–1000 L/min 5.4–60 m³/h	Ca.	FD-R80
3" (80A) (ø83 bis ø100)		005.4	90–1500 L/min 5.4–90 m³/h	3,0 kg	FD-R80
4" (100A) (ø100 bis ø127)		- 0,3–5 m/s	220-2500 L/min 12–150 m³/h	Ca.	ED 0405
5" (125A) (ø127 bis ø152)			220–3700 L/min 12–220 m³/h	3,3 kg	FD-R125
6" (150A) (ø152 bis ø191)			570–5500 L/min 36–330 m³/h	Ca.	FD-R200
8" (200A) (ø191 bis ø220)			570–9500 L/min 36–570 m³/h	3,5 kg	FD-K200

 $^{{}^\}star \text{Der Mindestdurchfluss (Nullschnitt-Durchflussrate) kann in den Einstellungen ge\"{a}ndert werden.}$

Kabel

Abbildung	Länge	Material	Gewicht	Modell
	2 m	PVC	Ca. 55 g	OP-75721
	10 m	Messing vernickelt	Ca. 220 g	OP-85502
	2 m	PUR	Ca. 75 g	OP-87636
	10 m	Zink vernickelt	Ca. 260 g	OP-87637
	10 m	PUR und SUS316L	Ca. 310 g	OP-88196
	Abbildung	2 m 10 m 2 m 10 m	2 m PVC 10 m Messing vernickelt 2 m PUR 10 m Zink vernickelt	2 m PVC Ca. 55 g 10 m Messing vernickelt Ca. 220 g 2 m PUR Ca. 75 g 10 m Zink vernickelt Ca. 260 g

Anklemmbarer Durchflusssensor der Modellreihe FD- X

HAUPTMERKMALE:

- Überwachen Sie minimale Durchflüsse in Schläuchen und Rohren von ø3 bis ø13.8 mm.
- Kompatibel mit allen Flüssigkeiten, einschließlich hochviskosen Flüssigkeiten wie Fett und Klebstoffen.
- Selbst Kleinstmengen können durch integrierte Kalibrierfunktionen genau überwacht werden.

Dosieren

Füllen

Lackieren

Kompatible Rohre	Kompatible Rohrdurchmesser		Montageset			Sensorkopf		
	Außendurchmesser (mm)	Installierbarer Bereich (mm)	Abbildung	Modell		Abbildung	Modell	Nenndurchflussbereich
Kunststoffrohre/ -schläuche	ø3 1/8" (3,18 mm)	ø2,7 bis ø3,7		FD-XC1R1		11	FD-XS1	0–1000 mL/min
	ø4	ø3,5 bis ø4,5		FD-XC1R2				
	ø6	ø5,5 bis ø6,5		FD-XC8R1			FD-XS8	0–3000 mL/min
	1/4" (6,35 mm)	ø5,9 bis ø6,9		FD-XC8R2	•			
	ø8	ø7,5 bis ø8,5		FD-XC8R3				0 bis 8000 mL/min
	3/8" (9,53 mm)	ø9,0 bis ø10,0		FD-XC20R1			FD-XS20	0–15 L/min
	ø10	ø9,5 bis ø10,5		FD-XC20R2				
	ø12	ø11,5 bis ø12,5		FD-XC20R3	,			0–20 L/min
	1/2" (12,7 mm)	ø12,2 bis ø13,2		FD-XC20R4	-			
Metallrohre	ø3 1/8" (3,18 mm) ø4	ø2,8 bis ø5,5		FD-XC1M)	11	FD-XS1	0–1000 mL/min
	ø6 1/4" (6,35 mm)	ø5,5 bis ø8,3		FD-XC8M)	11	FD-XS8	0–3000 mL/min
	ø8							0-8000 mL/min
	3/8" (9,53 mm)			FD-XC20M1			FD-XS20	0–15 L/min
	ø10	ø8,3 bis ø10,8						
	ø10.5				-			
	ø12			FD-XC20M2	r			0–20 L/min
	1/2" (12,7 mm)	ø10,8 bis ø14						
	ø13,8							

 $^{^{\}star}$ Die Abmessungen in Zoll sind keine Nennmaße B der JIS/ANSI-Normen. 1 Zoll = 25,4 mm.

^{*} Eine vollständige Übersicht zur Modellreihe FD-X finden Sie in der Broschüre zur Modellreihe FD-X, oder Sie wenden sich an Ihre zuständige KEYENCE-Niederlassung.

Weitere Prozess- und Durchflusssensoren

KEYENCE bietet ein umfassendes Sortiment an Prozesssensoren an, das über die Modellreihen FD-H und FI hinausgeht

Installation an großen Rohren (größer 44mm AD) oder dünnen Rohren und Schläuchen (kleiner 13mm AD)?

Modellreihe FD-R

Anklemmbarer Durchflusssensor

Die Modellreihe FD-R kann problemlos an Rohre mit einer Größe von bis zu 8" geklemmt werden.

Modellreihe FD-X

Anklemmbarer Durchflusssensor

Die Modellreihe FD-X ist ideal für die Überwachung minimaler Durchflussraten und Dosiermengen in dünnen Schläuchen oder Rohren.

→ S. 35

Drucküberwachung

Druckluft- und Gasüberwachung

Modellreihe GP-M

Digitale Drucksensoren für anspruchsvolle Aufgaben

Die Modellreihe GP-M kann Druck und Temperatur gleichzeitig überwachen.

→ Mehr im KEYENCE-Katalog GP-M

Modellreihe FD-G

Anklemmbarer Durchflusssensor für Druckluft und Gase

Die Modellreihe FD-G ist ein anklemmbarer Durchflusssensor für die Druckluftüberwachung.

Mehr im KEYENCE-Katalog FD-G

Zentrale Datenerfassung und Netzwerkkommunikation

Modellreihe NQ

Netzwerk-Kommunikationsmodul Die IO-Link-Kommunikationsmodule der Modellreihe NQ ermöglichen es Benutzern, Daten von Sensoren und Geräten rund um eine Maschine zu erfassen und in ein gängiges Netzwerkkommunikationsformat umzuwandeln. Die Modellreihe NQ vereinfacht die Verdrahtung und bietet ein noch nie dagewesenes Maß an Überwachungsmöglichkeiten.

→ S. 32

Gebührenfrei aus dem dt. Festnetz **0800-KEYENCE** www.keyence.de E-Mail: info@keyence.de

BITTE KONTAKTIEREN SIE UNS, UM DIE VERFÜGBARKEIT ZU KLÄREN

KEYENCE DEUTSCHLAND GmbH

■ Regionalbüros

Zentrale für Deutschland Siemensstraße 1, D-63263 Neu-Isenburg, Germany Tel: +49-6102-3689-0 Fax: +49-6102-3689-100

Berlin Bielefeld Mannheim Montabaur Düsseldorf München

Erfurt Nürnberg Essen Stuttgart

Frankfurt

Ulm

Hamburg

Hannover

Karlsruhe

Köln

Leipzig

KEYENCE INTERNATIONAL (BELGIUM) NV/SA

www.keyence.eu E-Mail: info@keyence.eu Hauptbüro Bedrijvenlaan 5, 2800 Mechelen, Belgien Tel: +32 (0)15 281 222 Fax: +32 (0)15 201 623

Belgien/Luxemburg Niederlande ■ Regionalbüros Österreich Polen Rumänien Slowakei Slowenien Schweiz Tschechien Ungarn